一、解不等式恒成立的两大思想方法(论文文献综述)
陈亚慧[1](2021)在《基于迁移理论的高中不等式的教学研究》文中认为
李瑞丽[2](2021)在《利用数学写作促进高中生数学理解性学习的实践研究》文中认为理解是学生学会知识的重要基础,会运用是学习数学的最终目标。数学理解性学习是指学生以理解为基础进行数学学习的过程,其目标指向是学生能理解数学,最终目标是能迁移与应用知识。如何促使高中生进行数学理解性学习呢?这需要寻找一种能深入了解学习者的认知过程,能对学生心智活动过程作出合理的分析与评价的途径。数学写作恰好能暴露学生的数学认知过程,教师根据写作反馈可有效的指导学生进行理解性学习,从而提高学生学习数学的效率和质量。本研究围绕“如何利用数学写作促进高中生数学理解性学习”这一核心问题,以高中数学必修五和必修二为教学内容,以L中学高一485班为实践班,高一472班为对照班来实施数学写作教学活动。本文主要从四个方面展开:首先,以问卷的形式调查了解上述两个班103名学生对数学写作的认识以及数学理解性学习现状;其次,根据调查结果向实践班介绍数学写作,并进行阅读指导和试写。针对试写中存在的问题,结合数学写作实践目的,设计了自我阐释类、情境应用类、洞察类、反思认识类四种类型的数学写作模式;再次是,从制定实施计划、实施每种类型的数学写作教学、评析学生作品、反思教学过程这四个环节进行数学写作教学实践;最后,通过后测与访谈,对数学写作、学生数学理解性学习情况、数学成绩进行对照分析,得出实践效果。综合整个研究过程,可得以下结论:○1学生对数学写作和数学学习的态度得到改观,接近94.2%学生表示对数学写作感兴趣,且写作态度端正积极。同时写作增强了学生内心的成就感和学习兴趣。○2数学写作对学生数学理解性学习具有一定的促进作用。通过数学写作,学生具备了进行理解性学习的能力,能够靠理解去学习数学,且能够自发地根据学习需要采取不同学习策略。○3促进理解性学习的数学写作实践方案具一定的可行性。实践后,学生数学成绩与基本数学能力得到提升,实践中还可获取学生认知情况和情感态度的变化情况。○4促进理解性学习的数学写作要遵循目的性原则、差异性原则、指导性原则、评价全面多元化原则写作。最后,针对实践结果和实际教学情况,笔者提出了以“数学写作”为辅助工具促进高中生数学理解性学习的教学建议:制定合理的写作任务;注重知识过程的阐明;注重问题活动情境的设计;注重评价反馈与交流。本研究将数学写作与数学理解性学习两者相融合是一种尝试,既突出写作主题——理解性学习,又涉及写作的各方面主题。本文为数学教师开展数学写作提供了一种参考,也为促进学生数学理解性学习提供了新途径。
闫文娟[3](2021)在《巧妙构造函数 破解三类题型》文中进行了进一步梳理函数是支撑数学学科知识体系的重要内容,反映了客观世界两个集合间的对应关系,而导数是研究函数性质的有力工具,是高考的热点话题。函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数解题的思路恰好是这两种思想的良好体现。下面浅谈巧妙构造函数,合理运用导数,破解三类题型,旨在抛砖引玉。
李百玲[4](2020)在《小议“构造函数”巧解不等式》文中研究指明提升学生高中数学能力,除了掌握必要的基础知识,更重要的是学生对数学思想方法的灵活运用.函数与方程、转化与化归是高中数学中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现.在近几年高考数学试卷中,许多与函数相关的解不等式的题目,尤其是压轴小题,经常能用到构造函数法.所谓构造函数是指通过一定方式,设计并构造一个与待解答问题相关的函数,并探究其单调性,借助图象或利用运算结果,从而得到不等式的解集.本文重点探讨如何合理地构造函数.
陈维彪[5](2020)在《基于学习迁移理论的高中数学不等式教学研究》文中研究指明通过迁移可以更好地架构不等式知识网络,培养学生的发散性思维,提高课堂教学效果和学生的逻辑推理能力.但在不等式实际教学中,学习迁移理论并没有发挥其应有的作用.因而,有必要了解学习迁移理论在不等式教学中的使用现状,制定相应的教学策略.本研究通过对学生进行问卷调查和访谈,调查学生对迁移概念的了解、迁移作用的认识以及在学习过程中使用迁移的情况;对教师进行访谈,了解教师在不等式教学中的困惑、对学习迁移理论的了解、影响迁移效果因素的看法及在教学中使用迁移的情况,分析存在的问题;接着研究学习迁移理论在不等式教学中的应用,得出学习迁移理论能提升学生不等式学习效果的结论.最后,提出基于学习迁移理论的不等式教学建议:(1)做好初高中不等式衔接教学,为高中不等式教学创造迁移基础;(2)借鉴新教材,迁移拓展不等式知识;(3)培养正迁移,纠正负迁移;(4)精心组织教学活动,培养学生的迁移意识;(5)重视变式训练,提高迁移能力;(6)对数学文化和不等式进行双向迁移,提升学生学习不等式的兴趣;(7)精心设计校本选修课程,为学生未来发展提供迁移基础.把学习迁移理论用到不等式教学过程中,系统地研究不等式知识,能提高学生学习不等式的兴趣,优化教师课堂教学活动,提高教学效果,对教师和学生的发展都有重要意义.
李秋霖[6](2020)在《高一不等式主题教学实验研究》文中提出主题教学是2017年新课标指出的将知识或者思想方法整合起来的教学方式,通过主题教学可以达到整体把控教材和提高学生数学核心素养的目标。本研究以函数与方程的数学思想方法为逻辑联系,对高一不等式展开主题教学实验研究,遵循新课标提出的要求,首先确定主题,分析教学要素,然后编制主题教学目标,设计教学流程,其次进行教学调查以及前后测,获取实验数据,最后对数据进行统计分析和评价反思。在为期一个月的实验教学后,对不等式部分典型的四个案例(不等关系与不等式,一元二次不等式,基本不等式,二元一次不等式(组))分析说明。为保证后测效度,本文除考试测试外,试图增加错误辨识题型的调查测试。测试的信度、难度、区分度均符合学生的认知水平,最终由质性和量化分析得出结论,其中量化分析包含描述性统计、独立样本t检验两方面。测试数据表明:前测两班无明显差异,后测两班差异明显,并且实验后实验班成绩优于对照班。实验后质性分析也反映出实验班的学生对于函数与方程的数学思想方法的掌握情况比对照班好。在数学核心素养的培养方面,以逻辑推理能力为例进行分析得出结论:题目难度越大、要求越高,实验班的逻辑推理能力体现越比对照班强。
黄淑钦[7](2020)在《基于精致理论的导数单元教学设计》文中研究表明在基于核心素养的课程改革背景下,普通高中数学教育发生了巨大的变化,如何在新课标视角下重新认识与把握数学学科的教学,成为了教师必须直面的问题.当前,教学存在的主要问题仍然是“碎片化”教学,预防“碎片化”现的关键,便是提倡整体教学观.精致理论所提倡的从整体到局部、自上而下的教学观与新课标的理念是一致的.因此,本文将精致理论与单元教学设计相结合,构建了基于精致理论的单元教学设计.由于导数及其应用的内容具有高度的抽象性,且题型灵活多变,给学生的深层理解和问题解决带来了困难.以本单元为例改进教学设计,能够启发学生对于导数单元的理解,从而发展学生的数学核心素养.本研究采用了文献研究法,对精致理论、单元教学设计与高中导数教学的已有研究成果进行了梳理,并进一步分析了精致理论对于单元教学设计的指导意义;采用问卷调查法与访谈法,对导数单元教学现状进行调查与分析,结果表明当前导数教学轻知识重应用,简化了对单元核心概念与原理的探索,学生对于知识的学习流于浅层;教师对单元教学设计的认识不准确,习惯从经验出发开展教学,缺乏更新教学方法的探索精神.结合上述研究,构建了基于精致理论的单元教学设计模式,以导数为例进行单元教学设计,详细阐述了基于精致理论的单元教学设计方法:(1)宏观上要整体把握单元内容,构建单元知识体系.通过教学要素分析与单元知识体系梳理,确定单元核心内容.(2)围绕单元核心内容制定课时计划、教学目标与教学评价.教学目标的取向要实现高、低层次目标之间的双向促进,以“低”搭建“高”,以“高”引领“低”,做到目标、教学与评价三者的统一.(3)教学设计要聚焦核心、整体规划;渐进精致、螺旋上升;定期综合、及时总结.新授课要注意构建思维困境,用高品质的教学设计激发学生的兴趣;重视逻辑联系,延长获得过程,巩固学生的知识框架;设计课堂教学主线,用有价值的问题引领数学课堂.习题课要选择基本问题;从简单到复杂进行排序;精致分析,化难为易;重视解题回顾,明确通性通法.微课要重视选题的价值性、内容的精致性以及制作的简洁性.
李春霞[8](2019)在《高考数学理科试卷的比较研究 ——以2016-2018年全国卷1与江苏卷为例》文中提出课程改革与高考考卷息息相关。近十几年新课改的实施促使高考试卷也发生了变化。从2020年开始高考数学江苏卷要改为全国卷,所以作为一线教师很迫切也很需要通过比较研究全国卷与江苏高考数学试卷异同来迎接高考改革。这不但能够使一线教师更深刻的认识高考,更好的理解并实施新课程标准,也可以给学生、命题人提供建议,取长补短。2016-2018年全国卷1与江苏卷比较研究是采用文献分析法、比较研究法从试卷结构、知识内容、数学思想方法、综合难度四个方面进行并得出以下结论:(1)考试时间、题型题量和分值基本稳定。全国卷1考试时间120分钟,总分150。江苏卷考试时间150分钟,总分200。全国卷1题型包括选择题、填空题和解答题。而江苏卷题型只包含填空题和解答题;(2)两个卷别的知识内容覆盖面广,但是侧重点不一样。近三年两卷别在考查知识内容方面符合课程标准的要求。因此两卷别的内容覆盖面广。不过在具体模块知识方面,江苏卷在函数与导数、三角知识、立体几何、数列这四个知识块的考查力度要比全国卷1的大。而在概率与统计这块知识上,全国卷1的考查力度远远超过了江苏卷;(3)两卷别的数学思想方法考查力度大覆盖面广,但是侧重点稍有差异。两个卷别在近三年的试题中都涉及函数与方程、数形结合、化归转化、分类与整合、特殊与一般五大思想方法。全国卷1更侧重对函数与方程的考查,而江苏卷更侧重于对化归转化思想的考查;(4)综合难度的差异。整体来说,江苏卷难度高于全国卷1。在知识含量因素方面,全国卷1和江苏卷的加权平均值都为2.21;在推理因素和运算因素以及探究因素上,江苏卷都高于全国卷1;在背景因素上,全国卷1的难度因素加权平均值为1.27,而江苏卷为1.16,全国卷1高于江苏卷。
詹丹[9](2019)在《分类讨论思想在高一函数教学中的应用研究》文中研究表明分类讨论思想作为重要的数学思想方法之一,受到许多专家、学者和教师的重视.现如今高考中的许多题目都是在分类讨论思想的基础上进行的,因此研究分类讨论思想方法在高一函数教学中的应用是有必要的.论文首先介绍了分类讨论思想的相关知识,其中主要包括基本原则、常见类型以及一般步骤.然后,探讨学生在运用分类讨论思想方法时存在的问题,即学生对分类讨论思想存在认知障碍,面对题目时不知如何选择分类以及分类时容易混淆、重复,同时我们对所存在的问题提出相应的策略.最后,通过案例分析研究了分类讨论思想分别在指数函数、对数函数、幂函数在教学中的应用,同时通过具体实例探讨了分类讨论思想在三角函数的中应用,这样可以培养学生思维的发散性、周密性和条理性,从而提高学生严密的逻辑思维能力,促进学生学习数学的兴趣以及创新意识的培养.
陈临雅[10](2019)在《基于高考试题分析的高一函数教学研究》文中认为高中函数知识有着重要的地位.但高中函数教与学的情况并不理想.为了改进当前高中函数教学现状,对高中函数教学研究很有必要.考虑到学生对高一函数内容的掌握情况基本决定了他们对高中函数知识的建构程度及对高中函数思想方法的认知程度,因此本文主要探讨了如何有效地实施高一函数教学.此外,为了更加明确高一函数的重点内容,而高考试题中考察到的函数知识一定程度上是高一函数教学重点的指挥棒之一,因此本文基于高考试题进行高一函数教学的研究.本研究分成三个方面:(1)高一函数“教什么”(教的内容);(2)高中生函数学习与教师教学的现状(学与教存在的问题);(3)高一函数“怎么教”(教的策略).本研究采用了文献研究法、问卷调查法和行动研究法.通过阅读参考文献梳理了关于核心素养、数学核心素养以及高中函数的研究成果,取其精华,发现其不足之处并对相关教学理论进行梳理并举例说明.分析了近5年高考函数试题,明确高一函数教学的重点内容是函数的奇偶性、函数的单调性、指数函数、对数函数、幂函数的图像与性质,特别是单调性的简单运用,例如比较大小、解不等式、单调区间的判断,函数零点的定义、零点个数的判断以及三角函数的图像、单调区间、周期、最值.通过问卷调查,发现当前高中函数学与教存在的主要问题是:(1)重教师主导,轻学生主体,学生机械接受地学习、基础知识掌握不牢固;(2)重结果轻过程,学生建构知识、思考的时间极少;(3)重教学进度,轻知识总结,学生不知重点,易遗忘知识点;(4)重解题轻反思,学生麻木地做题,解题思路不明确;(5)重课堂教学,轻学生心理,学生易失去学习函数的信心.在调查与理论结合的基础上,初步构建高一函数教学策略:(1)重视函数知识导入,促进有意义的学习.(2)注重引导学生函数知识建构的过程,建立支持性的课堂气氛.(1)提出必要的、具有启发性的、循序渐进的问题,提供学生思考的时间;(2)基本初等函数图像与性质的教学,落实从特殊到一般的过程,充分利用信息技术;(3)适当地为学生搭建脚手架,引导学生逐步理解抽象的函数知识;(4)引导学生整合已接收的函数知识,把握重点内容,加强函数知识间的联系.(3)强化解题思路分析,形成解后反思习惯.(4)教学生学“思想”.(5)关注学生学习函数的心理.
二、解不等式恒成立的两大思想方法(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、解不等式恒成立的两大思想方法(论文提纲范文)
(2)利用数学写作促进高中生数学理解性学习的实践研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.1.1 高中数学教学实践中存在的问题 |
1.1.2 新课程标准的要求 |
1.1.3 人教A版高中数学教科书的内容组织 |
1.1.4 数学写作的功能 |
1.1.5 数学理解性学习的必要性 |
1.2 研究内容及意义 |
1.2.1 研究内容 |
1.2.2 研究意义 |
1.3 研究思路 |
1.4 论文结构 |
第2章 文献综述 |
2.1 核心概念的界定 |
2.1.1 数学写作的概念 |
2.1.2 数学理解性学习的概念 |
2.2 国内外有关数学写作的研究 |
2.2.1 关于数学写作的价值 |
2.2.2 关于数学写作的类型 |
2.2.3 关于数学写作的指导 |
2.2.4 关于数学写作的评价 |
2.2.5 关于数学写作的实践研究 |
2.3 国内外有关数学理解性学习的研究 |
2.3.1 关于数学理解性学习的教学、学习策略 |
2.3.2 关于数学理解性学习的评价 |
2.3.3 关于数学理解性学习的实践研究 |
2.4 文献评述 |
2.5 相关理论基础 |
2.5.1 建构主义学习理论 |
2.5.2 元认知理论 |
2.5.3 认知心理学理论 |
第3章 研究设计 |
3.1 研究目的 |
3.2 研究方法 |
3.3 研究对象 |
3.4 研究工具 |
3.4.1 高中生数学写作调查问卷的设计 |
3.4.2 高中生数学理解性学习情况调查问卷设计 |
3.4.3 测试题的设计 |
3.4.4 访谈提纲设计 |
第4章 促进高中生数学理解性学习的数学写作准备 |
4.1 前期准备工作 |
4.1.1 前期调查 |
4.1.2 调查结果分析 |
4.1.3 向学生介绍数学写作 |
4.1.4 数学写作的阅读指导及试写 |
4.2 数学写作模式的设计 |
4.2.1 自我阐释类 |
4.2.2 情境应用类 |
4.2.3 洞察类 |
4.2.4 反思认识类 |
4.3 数学写作的评价 |
4.3.1 评价目的 |
4.3.2 评价原则 |
4.4 小结 |
第5章 促进高中生数学理解性学习的数学写作教学实践 |
5.1 实施方案 |
5.1.1 实施的教材内容 |
5.1.2 变量分析 |
5.2 数学写作教学实施计划 |
5.2.1 数学写作教学设计环节 |
5.2.2 数学写作题目、篇数 |
5.3 自我阐释类数学写作的实施及案例 |
5.3.1 写作目标 |
5.3.2 写作内容 |
5.3.3 写作题目的设计 |
5.3.4 关于自我阐释类数学写作的评价 |
5.3.5 写作案例及作品评析 |
5.3.6 自我阐释类写作的教学反思 |
5.4 情境应用类数学写作的实施及案例 |
5.4.1 写作目标 |
5.4.2 写作内容 |
5.4.3 写作题目的设计 |
5.4.4 关于情境应用类数学写作的评价 |
5.4.5 写作案例及作品评析 |
5.4.6 情境应用类写作的教学反思 |
5.5 洞察类数学写作的实施及案例 |
5.5.1 写作目标 |
5.5.2 写作内容 |
5.5.3 写作题目的设计 |
5.5.4 关于洞察类数学写作的评价 |
5.5.5 写作案例及作品评析 |
5.5.6 洞察类写作的教学反思 |
5.6 反思认识类数学写作的实施及案例 |
5.6.1 写作目标 |
5.6.2 写作内容 |
5.6.3 写作题目的设计 |
5.6.4 关于反思认识类数学写作的评价 |
5.6.5 写作案例及作品评析 |
5.6.6 反思认识类写作的教学反思 |
5.7 教学反思 |
第6章 数学写作促进高中生数学理解性学习的实践效果 |
6.1 数学写作对学生态度、写作能力的分析 |
6.1.1 数学写作调查分析 |
6.1.2 访谈结果分析 |
6.1.3 数学写作调查小结 |
6.2 数学理解性学习的情况分析 |
6.2.1 数学写作对数学理解性学习的影响分析 |
6.2.2 数学写作对数学理解性学习各维度的影响分析 |
6.2.3 测试题得分率分析 |
6.2.4 学生数学理解性学习的情况小结 |
6.3 数学成绩分析 |
6.3.1 数学考试成绩分析 |
6.3.2 测试题成绩分析 |
6.4 本章小结 |
第7章 研究结论与反思 |
7.1 研究的结论 |
7.2 研究的创新点 |
7.3 研究的不足 |
7.4 教学建议 |
7.4.1 制定合理的写作任务 |
7.4.2 注重知识过程的阐明 |
7.4.3 注重问题活动情境的设计 |
7.4.4 注重评价反馈与交流 |
7.5 研究的展望 |
参考文献 |
附录 A:高中生数学写作的调查问卷(前测) |
附录 B:学生数学写作访谈提纲 |
附录 C:高中生“数学理解性学习”调查问卷 |
附录 D 学生数学写作调查问卷(后测) |
附录 E:实践班和对照班数学成绩前后测数据对比表 |
附录 F:六道测试题 |
附录 G:实践班与对照班六道测试题成绩数据对比表 |
攻读硕士学位期间发表的论文及研究成果 |
致谢 |
(4)小议“构造函数”巧解不等式(论文提纲范文)
1 构造f(x)与x的关系 |
2 构造f(x)与ex的关系 |
3 构造f(x)与sinx,cosx的关系 |
(5)基于学习迁移理论的高中数学不等式教学研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究的背景 |
1.1.1 不等式学习的重要性 |
1.1.2 不等式教学中的困境 |
1.1.3 学习迁移理论在不等式中的作用 |
1.2 核心名词界定 |
1.2.1 教学 |
1.2.2 教学设计 |
1.2.3 解题 |
1.2.4 迁移 |
1.3 研究的内容和意义 |
1.3.1 研究的内容 |
1.3.2 研究的意义 |
1.4 研究的思路 |
1.4.1 研究计划 |
1.4.2 研究的技术路线 |
1.5 论文的结构 |
第2章 理论基础与文献综述 |
2.1 研究的理论基础 |
2.1.1 学习迁移的概念 |
2.1.2 迁移的分类 |
2.1.3 早期的迁移理论 |
2.1.4 现代的迁移理论 |
2.2 文献综述 |
2.2.1 文献搜集 |
2.2.2 不等式的研究现状 |
2.2.2.1 不等式教材的研究现状 |
2.2.2.2 不等式解题教学的研究现状 |
2.2.2.3 不等式教学策略的研究现状 |
2.2.3 学习迁移理论的在数学中的研究现状 |
2.2.4 不等式中的迁移的研究现状 |
2.2.5 文献评述 |
2.3 小结 |
第3章 研究设计 |
3.1 研究目的 |
3.2 研究方法 |
3.2.1 文献法 |
3.2.2 问卷调查法 |
3.2.3 访谈法 |
3.2.4 痕迹分析法 |
3.2.5 案例研究法 |
3.2.6 微型实验研究法 |
3.3 研究工具及研究对象选取 |
3.4 研究伦理 |
3.5 研究的创新之处 |
3.6 小结 |
第4章 基于学习迁移理论的不等式教学现状调查 |
4.1 基于学习迁移理论的问卷分析 |
4.1.1 问卷设计 |
4.1.2 实施调查 |
4.1.3 问卷可靠性分析 |
4.1.4 学习迁移理论的问卷结果分析 |
4.1.4.1 学生学习一元一次不等式的迁移体会 |
4.1.4.2 学生对教师的迁移教学的感受 |
4.1.4.3 学生对迁移作用的观点 |
4.1.4.4 学生对解题中所涉及到迁移的体会 |
4.1.4.5 学生对数学内部及其他学科间的迁移的认识 |
4.2 基于学习迁移理论的访谈研究 |
4.2.1 访谈设计 |
4.2.2 实施访谈 |
4.2.3 访谈结果及分析 |
4.2.3.1 教师访谈记录 |
4.2.3.2 教师访谈分析 |
4.2.3.3 学生访谈记录 |
4.2.3.4 学生访谈分析 |
4.3 基于学习迁移理论的调查结论 |
4.4 小结 |
第5章 学习迁移理论在不等式教学中的应用 |
5.1 新、旧课标的不等式对比分析 |
5.1.1 内容方面 |
5.1.2 要求方面 |
5.2 不等式中的迁移 |
5.2.1 不等式知识中的迁移 |
5.2.1.1 不等关系与不等式中的迁移 |
5.2.1.2 一元二次不等式及其解法中的迁移 |
5.2.1.3 基本不等式中的迁移 |
5.2.1.4 教材其他内容的迁移 |
5.2.2 数学文化中的迁移 |
5.2.3 思想方法的迁移 |
5.3 基于学习迁移理论的不等式教学目的 |
5.4 基于学习迁移理论的不等式教学原则 |
5.5 基于学习迁移理论的不等式教学流程 |
5.6 基于学习迁移理论的不等式教学案例 |
5.6.1 实验班、对照班的选择 |
5.6.2 基于学习迁移理论的“一元二次不等式及其解法”的案例 |
5.6.2.1 基于学习迁移理论的一元二次不等式及其解法教学设计构想 |
5.6.2.2 基于学习迁移理论的一元二次不等式及其解法教学设计 |
5.6.2.3 基于学习迁移理论的一元二次不等式及其解法的教学访谈 |
5.6.3 基于学习迁移理论的“基本不等式”的案例 |
5.6.3.1 基于学习迁移理论的基本不等式教学设计构想 |
5.6.3.2 基于学习迁移理论的基本不等式教学设计 |
5.6.3.3 基于学习迁移理论的基本不等式的教学访谈 |
5.6.4 迁移教学效果分析 |
5.6.4.1 实验班解题痕迹分析 |
5.6.4.2 第10周周测分析 |
5.7 小结 |
第6章 基于学习迁移理论的不等式教学建议 |
6.1 基于学习迁移理论的不等式教学建议 |
6.1.1 做好初高中不等式衔接教学,为高中不等式教学创造迁移基础 |
6.1.2 借鉴新教材,迁移拓展不等式知识 |
6.1.3 培养正迁移,纠正负迁移 |
6.1.4 精心组织教学活动,培养学生的迁移意识 |
6.1.5 重视变式训练,提高迁移能力 |
6.1.6 对数学文化和不等式进行双向迁移,提升学生学习不等式的兴趣 |
6.1.7 精心设计校本选修课程,为学生未来发展提供迁移基础 |
6.2 小结 |
第7章 结论与反思 |
7.1 研究的结论 |
7.1.1 问卷和访谈调查分析的结果 |
7.1.2 迁移理论在不等式教学中的应用分析 |
7.1.3 不等式教学建议 |
7.2 研究的不足之处与展望 |
参考文献 |
附录A 基于学习迁移理论的调查问卷 |
附录B 学生访谈提纲 |
附录C 教师访谈提纲 |
附录D 后测题 |
攻读学位期间发表的学术论文和研究成果 |
致谢 |
(6)高一不等式主题教学实验研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 问题的提出 |
1.2 选题缘由及意义 |
1.2.1 选题缘由 |
1.2.2 研究的意义 |
1.3 研究思路 |
1.3.1 研究方法 |
1.3.2 研究内容 |
1.3.3 研究的创新点 |
第2章 文献综述 |
2.1 高中不等式课程的研究 |
2.1.1 关于不等式课程内容的研究 |
2.1.2 关于不等式课程教学的研究 |
2.2 关于主题教学设计的研究 |
2.3 文献评述 |
第3章 研究的设计 |
3.1 核心概念界定 |
3.1.1 高中不等式 |
3.1.2 主题教学 |
3.1.3 教育实验研究 |
3.2 研究的理论基础 |
3.2.1 系统科学理论 |
3.2.2 整合思想 |
3.2.3 数学教学原则 |
3.3 主题教学实验研究设计 |
3.3.1 确定主题教学内容 |
3.3.2 分析教学要素 |
3.3.3 编制主题教学目标 |
3.3.4 设计主题教学流程 |
3.3.5 评价,反思,修改 |
3.4 实验数据分析的理论依据 |
3.4.1 测试效度分析 |
3.4.2 测试信度检测 |
3.4.3 测试难度检测 |
3.4.4 测试区分度检测 |
3.5 研究的伦理 |
第4章 不等式主题教学设计与案例分析 |
4.1 不等式主题教学设计过程 |
4.1.1 教师访谈记录说明 |
4.1.2 主题教学设计流程 |
4.2 不等式主题教学案例分析与说明 |
4.2.1 不等关系与不等式教学案例 |
4.2.2 一元二次不等式案例 |
4.2.3 基本不等式案例 |
4.2.4 二元一次不等式(组)案例 |
4.3 本章小结 |
第5章 实验研究结果分析 |
5.1 实验过程说明 |
5.1.1 实验设计 |
5.1.2 前测数据分析 |
5.1.3 测试卷一设计说明 |
5.1.4 测试卷二设计说明 |
5.2 实验研究结果分析 |
5.2.1 测试卷一结果质性分析 |
5.2.2 测试卷一统计数据量化分析 |
5.2.3 测试卷二统计数据量化分析 |
5.3 本章小结 |
第6章 结论 |
6.1 研究的结论 |
6.1.1 主题教学结论 |
6.1.2 实验结论 |
6.2 研究的不足与反思 |
6.3 研究的展望 |
参考文献 |
附录A:高中数学不等式测试卷 |
附录B:高一学生不等式相关知识学习效果调查测试 |
附录C:教师访谈问题 |
攻读学位期间发表的论文和研究成果 |
致谢 |
(7)基于精致理论的导数单元教学设计(论文提纲范文)
中文摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究意义 |
1.4 研究过程与方法 |
1.4.1 研究过程 |
1.4.2 研究方法 |
1.5 论文结构 |
第二章 文献综述 |
2.1 精致理论 |
2.1.1 精致理论的基本内涵 |
2.1.2 精致理论的教学应用 |
2.2 单元教学设计 |
2.2.1 单元教学设计的内容概要 |
2.2.2 单元教学设计的实施步骤 |
2.3 高中导数教学 |
2.3.1 新课程改革背景下的导数教学 |
2.3.2 导数教学的研究现状 |
2.4 已有研究的进一步分析 |
第三章 导数的单元教学设计现状调查与分析 |
3.1 “学”的角度 |
3.1.1 问卷设计 |
3.1.2 调查过程 |
3.1.3 调查发现 |
3.2 “教”的角度 |
3.2.1 调查过程 |
3.2.2 调查发现 |
3.3 调查结论 |
第四章 精致理论指导下的高中导数单元教学设计 |
4.1 基于精致理论的单元教学设计模式 |
4.2 宏观—构建单元体系 |
4.2.1 教学要素分析 |
4.2.2 单元知识体系梳理 |
4.2.3 确定单元核心内容 |
4.2.4 完善单元内容 |
4.3 中观—制定教学计划 |
4.3.1 课时规划 |
4.3.2 教学目标 |
4.3.3 教学评价 |
4.4 微观—设计教学流程 |
4.3.1 基于精致理论的数学教学设计原则 |
4.3.2 新授课教学策略 |
4.3.3 习题课教学策略 |
4.3.4 微课设计策略 |
第五章 基于精致理论的高中导数单元教学设计案例研究 |
5.1 《函数的单调性与导数》新授课案例研究 |
5.2 《函数的单调性与导数》习题课案例分析 |
5.3 微课教学案例:《一元函数导数及其应用》单元小结 |
第六章 结论与展望 |
6.1 研究结论 |
6.2 研究展望 |
附录1 高中生数学单元学习情况调查问卷 |
附录2 学生访谈提纲 |
附录3 教师访谈提纲 |
附录4 《一元函数导数及其应用》单元学习检测 |
附录5 《一元函数导数及其应用》单元小结微课演示文稿 |
参考文献 |
致谢 |
个人简历 |
(8)高考数学理科试卷的比较研究 ——以2016-2018年全国卷1与江苏卷为例(论文提纲范文)
中文摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究方法 |
1.4 研究意义 |
2 文献综述 |
2.1 高考数学试卷的比较研究 |
2.2 研究现状述评 |
3 试卷结构的比较研究 |
3.1 考试时间与总分比较 |
3.2 题型数量和分值分配的比较 |
4 知识内容的比较研究 |
4.1 全国卷1主干知识比较分析 |
4.2 江苏卷主干知识比较分析 |
4.3 主干知识分值比例比较分析 |
5 思想方法的比较研究 |
5.1 数学思想方法概述 |
5.2 思想方法体现的广度比较 |
5.3 思想方法考查的力度比较 |
5.4 思想方法考查的知识块比较 |
5.5 思想方法交汇的比较 |
6 难度比较研究 |
6.1 难度因素统计 |
6.2 探究水平 |
6.3 背景水平 |
6.4 运算水平 |
6.5 推理水平 |
6.6 知识含量 |
6.7 综合难度 |
7 启示与建议 |
7.1 关于教师的教学 |
7.2 关于学生的学习 |
7.3 关于试题的命制 |
8 结论与展望 |
8.1 研究结论 |
8.2 不足与展望 |
参考文献 |
附录 A |
附录 B |
致谢 |
(9)分类讨论思想在高一函数教学中的应用研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景与意义 |
1.2 研究现状 |
1.3 研究主要内容与方法 |
第2章 分类讨论思想的相关理论 |
2.1 分类讨论思想的理论依据 |
2.2 分类讨论思想的基本原则 |
2.3 分类讨论的常见类型 |
2.4 分类讨论的一般步骤 |
第3章 分类讨论思想在教学中存在的问题以及解决方法 |
3.1 分类讨论思想在教学中存在的问题 |
3.2 分类讨论思想在教学中存在的问题解决策略 |
第4章 分类讨论思想在高一函数教学中的教学案例 |
4.1 分类讨论思想在指数函数教学中的应用 |
4.2 分类讨论思想在对数函数教学中的应用 |
4.3 分类讨论思想在幂函数教学中的应用 |
4.4 分类讨论思想在三角函数教学中的应用 |
4.5 分类讨论思想在函数中的综合应用 |
结束语 |
附录1:教师访谈提纲 |
附录2:教师访谈记录 |
附录3:学生访谈提纲 |
参考文献 |
致谢 |
(10)基于高考试题分析的高一函数教学研究(论文提纲范文)
中文摘要 |
Abstract |
1 绪论 |
1.1 研究背景 |
1.1.1 高中函数的重要地位 |
1.1.2 函数教与学存在一些问题 |
1.2 研究问题 |
1.3 研究意义 |
1.4 研究方法 |
1.5 研究的过程设计 |
1.6 论文结构 |
2 文献综述 |
2.1 核心素养与数学核心素养 |
2.1.1 核心素养 |
2.1.2 数学核心素养 |
2.2 高中函数研究 |
2.2.1 高中函数教材的研究 |
2.2.2 高中函数解题的研究 |
2.2.3 高中函数学习困难与障碍的研究 |
2.2.4 高中函数性质的研究 |
2.2.5 高中函数高考试题的研究 |
2.2.6 高中函数教学的研究 |
2.2.7 高中函数研究总结 |
3 理论基础 |
3.1 APOS理论 |
3.2 脚手架理论 |
3.3 有意义学习 |
3.4 过程性变式 |
3.5 有效教学 |
4 近5年高考函数试题研究 |
4.1 近5年高考函数试题的总体分析 |
4.1.1 函数试题分值和数量分析 |
4.1.2 函数试题考察的知识、能力分析 |
4.1.3 近5 年高考函数试题总体分析结果 |
4.2 近5年高考函数试题的具体分析 |
4.2.1 函数的奇偶性 |
4.2.2 分段函数的应用 |
4.2.3 函数图像的选择 |
4.2.4 函数(?)或三角函数的性质 |
4.2.5 基本初等函数的单调性 |
4.2.6 函数的导数与零点、单调性、最值 |
4.2.7 近5 年高考函数试题具体分析结果 |
5 高中函数学习与教学现状调查研究 |
5.1 调查目的 |
5.2 调查对象 |
5.3 问卷的设计 |
5.4 调查数据统计与分析 |
5.4.1 第一部分调查数据统计表 |
5.4.2 第一部分调查结果 |
5.4.3 第二部分调查数据统计表 |
5.4.4 第二部分调查结果 |
5.5 问卷调查的结论 |
6 高一函数的教学策略建构 |
6.1 重视函数知识导入,促进有意义的学习 |
6.2 注重引导学生函数知识建构的过程,建立支持性的课堂气氛 |
6.3 强化解题思路分析,形成解后反思习惯 |
6.4 教学生学“思想” |
6.5 关注学生学习函数的心理 |
7 高一函数的教学案例研究 |
7.1 《人教A版必修(1)1.3.1 函数的单调性》的教学设计 |
7.2 《人教A版必修(1)2.1.2 指数函数及其性质》的教学设计 |
8 研究结论与展望 |
8.1 研究结论 |
8.2 进一步研究的建议 |
附录1 |
参考文献 |
致谢 |
个人简历 |
四、解不等式恒成立的两大思想方法(论文参考文献)
- [1]基于迁移理论的高中不等式的教学研究[D]. 陈亚慧. 山东师范大学, 2021
- [2]利用数学写作促进高中生数学理解性学习的实践研究[D]. 李瑞丽. 云南师范大学, 2021(08)
- [3]巧妙构造函数 破解三类题型[J]. 闫文娟. 中学生数理化(高二数学), 2021(05)
- [4]小议“构造函数”巧解不等式[J]. 李百玲. 高中数理化, 2020(18)
- [5]基于学习迁移理论的高中数学不等式教学研究[D]. 陈维彪. 云南师范大学, 2020(01)
- [6]高一不等式主题教学实验研究[D]. 李秋霖. 云南师范大学, 2020(01)
- [7]基于精致理论的导数单元教学设计[D]. 黄淑钦. 福建师范大学, 2020(12)
- [8]高考数学理科试卷的比较研究 ——以2016-2018年全国卷1与江苏卷为例[D]. 李春霞. 山西师范大学, 2019(05)
- [9]分类讨论思想在高一函数教学中的应用研究[D]. 詹丹. 湖南理工学院, 2019(01)
- [10]基于高考试题分析的高一函数教学研究[D]. 陈临雅. 福建师范大学, 2019(12)