一、在《高等数学》教学中实施素质教育的思考与尝试(论文文献综述)
刘家新[1](2021)在《“课程思政”视域下初中数学教学设计研究 ——以函数教学为例》文中研究指明立德树人是我国教育的根本任务,加强对学生的思想政治教育,思想政治课是主渠道,在各学科教育中渗透思想政治教育也责无旁贷。在学科教学中融入思想政治的元素,使学科课程在育人中发挥应有的作用,是新时代教育工作者的使命。在文献研究的基础上,研究践行课程思政的理论模型,即确立辩证唯物主义观教育、家国情怀和爱国主义精神的教育、社会责任感教育、优良品德和个性品质教育这四个维度,从这四个维度出发将课程思政融入到初中数学教学设计之中,在数学教学中对学生进行思想政治教育。运用问卷调查法和访谈法,了解当前在初中数学教学中践行课程思政的现状;结合教学内容和学生特点,以初中函数教学为例,探索“课程思政”视域下的初中数学教学设计,并进行实践和效果检验,提出在初中数学教学中践行课程思政方法与途径。在初中数学教学中践行课程思政是必要的和可行的,将数学知识的学习与思政教育有机结合起来,既能实现在教学过程中对学生进行思想政治教育,又能通过思政案例的呈现激发学生的数学学习兴趣,调动学习的积极性,有助于对于数学专业知识的掌握。在初中数学教学设计中践行课程思政:学校要加强对课程思政教学改革的领导,建立科学的评价体系,实现课程思政资源和案例共享,保证课程思政的践行效果;教师要加强师德修养,树立在教学中践行课程思政的教育信念,深度挖掘思政元素,并在教学各环节中落实。
孙贺[2](2021)在《课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例》文中认为“课程思政”对于落实立德树人根本任务,发挥好每门课程的育人功能,构建全员全程全方位育人格局,培养德智体美劳全面发展的社会主义建设者和接班人具有重要的作用。以高中“函数模型的应用”专题的教学内容为例,探索专题教学中融入课程思政的问题。在文献研究基础上,在数学教学中落实课程思政的目标,划分维度为数学品格、文化素养和价值理念三个一级指标,在每个一级指标下又设置四个二级指标;编制学生调查问卷、教师访谈提纲,对课程思政在高中数学课程中的实施情况展开调查;完成课程思政视域下的“函数模型的应用”专题教学设计与实践,分析对数学学习成绩的影响,并提出教学建议。研究表明:(1)编制的调查问卷折半信度、内容效度以及结构效度较好,可作为测量高中数学教学融入课程思政水平的调查工具;(2)实验班和对照班的学习成绩不存在显着性差异,即教学中落实课程思政目标不会对学生成绩产生消极影响;(3)参与教学实践的学生数学品格、文化素养、价值理念三个一级维度的水平均有所提升,其中数学品格的提升效果最明显,文化素养、价值引领的显着性效果依次减弱,育人效果得以彰显。践行课程思政理念,数学教学应做好以下工作:(1)丰富课程思政交流形式,提升教师思政育人意识;(2)以数学为基点联系社会热点,拓宽教师思政储备;(3)分阶段制定思政育人目标,学科间共享思政成果;(4)利用信息技术创新课堂形式,于互动中达到育人实效;(5)弘扬优秀文化与先进事迹,营造良好思政环境;(6)质性评价与定量评价相结合,细化思政考核方式。
陆奕纯[3](2021)在《初等数学教学借鉴高等数学教学法的初探》文中研究表明高校教师在实际教学中发现初等数学与高等数学衔接方面存在问题,尤其是大一新生,一入学就面临着微积分等核心基础课程的学习,但是仍然只习惯于高中的教学模式,不适应高等数学的教学模式,为此,大学教师额外进行各种改革以迁就学生适应和过渡.另一方面,随着新课改的实施,在教学内容上已有高等数学下放的趋势,这就为高中教学过程中部分地采用大学的教学模式提供了机会.本文将从教学方法角度出发,初步探索一个新的研究方向:初等数学教学借鉴高等数学教学法.通过对当前大学和高中教学方法使用情况的访谈调查,根据所得数据分析两种教学方法在使用上的差异:一个是偏重习题训练,另一个是围绕基本概念进行教学.然后,本文结合访谈内容从理解性教学的角度,借鉴高等数学教学法对高中教学提出7种策略,建议以“思”代“练”来减少习题,通过探索创新来理解知识点.以高中教学内容“数列与数学归纳法”为例,仅采用“斐波那契数列”为例题,重组整章内容进行教学,强调基本概念和知识点的理解与拓展,从而实现两者在教学模式上的衔接.
刘奕[4](2020)在《5G网络技术对提升4G网络性能的研究》文中研究表明随着互联网的快速发展,越来越多的设备接入到移动网络,新的服务与应用层出不穷,对移动网络的容量、传输速率、延时等提出了更高的要求。5G技术的出现,使得满足这些要求成为了可能。而在5G全面实施之前,提高现有网络的性能及用户感知成为亟需解决的问题。本文从5G应用场景及目标入手,介绍了现网改善网络性能的处理办法,并针对当前5G关键技术 Massive MIMO 技术、MEC 技术、超密集组网、极简载波技术等作用开展探讨,为5G技术对4G 网络质量提升给以了有效参考。
李妍[5](2020)在《初高等数学衔接问题研究 ——以三角、反三角函数为例》文中研究说明高中教育重在面向全体学生,属于义务教育的延续,同时也担负着为高等院校输送和选拔人才的任务。而大学则重在为社会主义事业培养建设者和接班人,确保学生在进入社会之前能够掌握基本的专业知识以及专业能力。虽然从教学目标、内容、理念、方式以及受教育者的思维水平等方面来看,二者都有着极大的区别,但是从系统论的角度来看,教育本身是一个完整的系统,它由不同的子系统串联、相互衔接、彼此作用而成。鉴于高中和大学教师教学方式与学生学习方式的极大转变,很容易导致学生由高中步入大学时产生断层现象。因此,初高等教育间的衔接问题就变得日益突出。由于三角函数的相关知识不仅仅是基本初等函数中的一种,更是沟通着初等数学与高等数学的通道之一。而作为与三角函数互为反函数的反三角函数,它不仅对于三角函数知识的理解有着重要的作用,还可以用来培养学生的逻辑推理能力以及严谨的数学思维。因此,本文以三角函数与反三角函数为抓手,研究初高等数学间的衔接问题,希望能为我国教育事业的有机整合做出贡献。首先,明确本研究课题的研究背景和意义。据此对相关文献进行整理分析,了解三角函数与反三角函数的研究现状,分析在初等数学阶段三角及反三角函数的教学内容及重点。同时,总结国内外关于教育衔接问题的研究情况。其次,以“提出问题——分析问题——解决问题”为主线逐步展开论文主体内容。其中,“提出问题”这一部分主要是三角和反三角函数的教学及应用现状分析。在初等数学中,以数学课程标准和高考试题为入手点,分析三角及反三角函数的教学现状,同时以华东师范大学数学系编写的第四版《数学分析》一书为参考,分析三角及反三角函数在高等数学中的应用,借此分析初高等数学间三角及反三角函数存在的衔接问题。“分析问题”这部分则主要是依据上述现状分析,总结三角及反三角函数存在的衔接问题,从初等数学与高等数学两个维度,深入挖掘衔接问题形成的原因。在“解决问题”这部分,则是根据所提出的问题和形成原因,针对不同的主体提出相应的衔接建议,并给出部分教学片断和两个具体衔接内容的案例设计。最后,是本研究课题所得成果的推广。结合衔接建议中“注重提升学生的学科核心素养”,将本文的研究成果平行推广到定积分应用一课中,并给出详细的教学设计。
魏薇[6](2020)在《基于成因分析的大学生数学学习困难转化研究 ——以结构教学法为例》文中指出数学学习困难一直都在基础教育领域备受关注,近几年来更引起高校的广泛关注。国内外对中小学数学学习困难的评估和诊断、分类和成因分析以及补救和转化工作都作了较为系统的研究,并取得颇有价值的成果。但是,大学生正处于青春期向成人期过渡这一特殊阶段,无法直接利用初等数学的一些研究来指导高等数学的教育实践。那么在大学阶段,造成“数学学习困难”的原因有哪些?有什么有效的教学方法能够帮助实现大学生数学学习困难的转化呢?笔者总结了以往学者大量研究成果的基础上,对大学生数学学习困难进行了再定义和成因分析,并根据这些成因寻找切实有效的教学方法,在大学生数学学习困难领域开展教学转化研究。具体来说,整个研究分三个阶段:1.收集与大学生数学学习困难相关的文献资料,从各研究中总结其学习特点进行再定义;通过文献分析初步整理出大学生数学学习困难原因主要分为以下三个维度:教学因素、学生心理和外部环境因素,其中学生心理作为内部动机是主导因素,也应是教学转化的主要方向。可细分为学习动机与归因、学习思维与习惯、学习方法与策略三个方面;通过教学策略研究发现“结构教学法”能有效激发学生学习的自主性,增强联系新知旧知及各方面数学素养的能力。因此提出将“结构教学法”应用于高等数学课堂,探索其对大学生数学学习困难转化的效果。2.通过对各高校问卷调查的数据进行因子分析,验证了各因子与成因分析基本一致,说明成因分析中分类的准确性。并利用访谈共同为下一阶段的教学设计做指导。3.通过“结构教学法”在高等数学课堂中进行教学设计与实施,对比学生在动机与归因、思维与习惯、方法与策略方面发生的变化,来说明转化研究的实际效果。研究结果表明,“结构教学法”确实能让大部分学生对数学的学习态度有所转变,对自身的评价更为准确,对学习方法会适当作出调整,学习数学也不再只停留在知识表面,而是挖掘一切与其有关的因素,这证明他们的学习兴趣也得到了一定的激发。进一步说明,“结构教学法”对于激发学生动机、转变学习方法、培养良好学习习惯是有一定效果的。也用事实证明了大学生数学学习困难只是一种暂时的状态,通过合适、有效的教学转化,可以使学生们的潜能得以发挥,改变数学学习困难的局面。因此,将“结构教学法”应用于大学生数学学习困难的转化研究是有积极意义的,希望本文为该领域的研究提供有价值的参考信息。
单妍炎[7](2019)在《大学数学课堂文化模式建构的行动研究 ——以工科《高等数学》教学为例》文中研究表明课堂文化不仅对课堂教学起文化引领的作用,在很大程度上还决定着课堂教学质量的高低。课堂文化的转型和重建是课堂教学改革的核心与目标。数学课堂文化作为数学文化的一种微观研究,理论抽象且实践上没有可依循的具体步骤。2009年,美国石溪大学教授纳迪亚·肯尼迪(Nadia Kennedy)指出,数学探究共同体模式下的数学课堂文化是一个自校正、自指导和自组织的复杂系统。它以对话和数学探究为出发点,在共同体学习中将学科知识组织成有意义的系统。大学工科数学作为国内高校长期扶持的特色课程,其课堂文化的营造要求学生在提出和解决工程问题时能熟练运用数学、识别和辨析社会系统中的数学、对自己的数学知识有信心以及对数学作为一种文化要素的鉴赏。“新工科”教育背景下的高等数学课堂教学,怎样才能发展出数学探究共同体,从而进一步建构出新型的数学课堂文化?就成为本文研究的核心问题。为此,首先致力于培养学生的数学对话能力,并逐步建立出相应的社会数学规范与价值观。其次,基于文化和实用的观点对核心内容进行数学建模活动设计,促使学生在共同体学习中理解数学的实际应用。最后,在对学生建模能力考核、数学学习情感配对变量差值t检验以及数学教学模式评价的基础上,探寻出工科数学课堂文化建构的有效路径。本文通过行动研究法来探讨大学工科数学课堂上探究文化的建构过程。选取西部某高校17级工业工程专业的64名学生为对象,采用质性研究为主、量化研究为辅的方法,透过教学观察、教学反思、学生焦点团体访谈与调查问卷等资料的收集,针对行动方案中所发现问题制定解决策略。每次行动方案均建立在上次方案的反思和修正基础上,依此类推,行动方案之间环环相扣并愈来愈精致。质性分析着重描述学生思维的转变、数学实践的发展以及社会数学规范的建立。具体而言,本研究主要涵盖以下三个部分:第一,在探究共同体模式下优化学习环境、重置师生角色以发展数学课堂实践。学生在课堂上参与讨论并解决新的数学问题,在学习共同体中进行数学对话与行动。在课堂互动中,数学文化成为学生向他人学习与交流的内容。社会数学规范的建立与稳固贯穿课堂文化生成的整个历程。学生正向学习情感的培养与建模素养的提高,成为新型数学课堂文化形成的显性指标。第二,从工科数学课堂教学现状出发,在三次行动研究循环中小断修正教学行动。第一次行动方案主要解决师生的外显行为,多以常规的课堂规范加以纠正。第二次行动方案主要解决师生课堂数学实践的发展。第三次行动方案通过集体论证中社会数学规范的稳固发展,确保课堂探究文化的形成。第三,评估数学探究共同体模式下大学数学课堂文化重建的效果。从社会数学规范的建立、学生正向学习情感的培养以及建模能力的提升三方面,评估大学数学课堂文化生成的有效性。其中,学生正向学习情感的培养与建模素养的提高是数学课堂文化生成的显性指标。量化研究方面,通过自制数学建模试卷五个评价维度的考察,发现大部分学生能够在复杂和简化之间找到平衡,并能考虑建模任务的目标与背景限制,但是在模型解释、论证和评估方面的能力仍需加强。同时,配对样本t检验分析表明,探究共同体中的数学建模活动对学生在高等数学学习情感方面有显着影响(p<0.05),而且这种影响是积极的。理论上,本研究分析和确定出数学课堂文化的五个维度,)使抽象的数学课堂文化理论具有了可操作性。同时,从社会数学规范的建立、学生正向学习情感的培养以及建模能力的提升三个方面,合理评估大学工科数学课堂文化形成的有效性。实践层面,运用行动研究法克服数学课堂文化建设的长期性和艰巨性,充实并深化了大学数学课堂文化的进一步研究。论文最后指出了研究局限以及后续研究的方向。
栾培新[8](2018)在《基于STS的创新创业教育研究》文中提出为实施创新驱动发展战略,建设世界科技强国,人才资源是第一资源,是一个国家最宝贵最重要的资源。高等教育是培养国家需要的各级各类专门人才最重要途径,理应充分发挥自身在人才培养方面的优势。在我国社会领域掀起了“大众创业、万众创新”发展的新浪潮的时代背景下,高校的创新创业教育蓬勃开展,也取得了很大的成绩,但是,高校的创新创业教育如何更好地服务于国家对创新创业人才的需要,如何服务于解决“人才短缺”与“大学生就业难”的矛盾问题,有很多值得从STS视角加以深入研究的理论和现实问题。STS研究是在科学技术与社会走向一体化过程逐渐发展起来的新兴的综合性交叉学科,它侧重从多学科、跨学科角度探究科学技术与社会的相互作用关系,主要沿着理论研究、应用研究和STS教育三个方向发展。STS的研究视域以及其研究方法为对高校创新创业教育的科技哲学研究提供了有效的方法论工具。本文提出,STS研究要直面中国的创新创业教育问题,中国的创新创业教育问题属于具有新时代中国特色STS的现实问题,其依据在于:二者在培养目标上的一致性;二者在教育内容上的契合性;二者在培养路径上的耦合性。以STS的视角审视创新创业教育的理论问题。创新创业教育是一种具有创造创新创业特质的教育实践活动,创造创新创业特质贯穿于高等教育整体系统,是创造教育、创新教育、创业教育三者的有机统一,它具有系统性、实践性、建构性和主体性。分析了创新创业教育的基本定位和价值。以STS的视角审视创新创业教育的历史问题。梳理了北美地区、欧洲、亚太地区创新创业教育的发展情况,回顾了我国创新创业教育兴起时期和发展时期的创新创业教育状况,尤其整理了高校开展创新创业教育起始阶段、多元探索阶段、全面推进阶段和深入推进阶段的情况,并概括出我国高校创新创业发展的基本特征。以STS的视角审视我国创新创业教育现实问题。包括创新创业教育理念的滞后与超越,创新创业教育价值取向的偏差与回归,创新创业教育的失衡与平衡,创新创业教育与专业教育、通识教育的脱节与融合,高校创新创业教育网络系统的分离与构建。将创新创业教育纳入STS研究视域,探究中国创新创业教育的理论和现实问题,无论对于丰富STS的研究,还是对于促进中国创新创业教育发展,推动创新型人才培养都具有重要的意义。
田仕芹[9](2017)在《建设性后现代视野下高等数学课程问题与改进策略研究》文中研究表明《高等数学》是高等院校理工、农、林、医、经管等学科的基础课程,具有很强的系统性、抽象性、逻辑性和应用性,其教学质量的高低直接影响到学生数学素质的提高和相关专业课程的学习。目前,高等数学教材内容与学生所学专业的联系不够紧密;教师课堂教学行为存在照本宣科、知识本位、预定程序、自导自演等现象;学生在学习过程中,存在初等数学思维向高等数学思维的转变困难、学习方法与策略不当等问题。综观国内外对高等数学课程的研究,已有研究大多以传统的课程和教学理论为指导,对解决当前高等数学课程存在的许多矛盾,有一定的局限性;定性的研究多于定量的研究,在定量研究方面,对高等数学课程现状缺乏有针对性的调查统计数据;对高等数学课程的研究有待深入和细化。建设性后现代哲学在有机、整合思维框架下构建一种超越现代性的世界观,建设性后现代教育学家关注课程理解和课程对人心灵的启迪与解放,倡导课程的开放性、多元性、过程性,有力地推动了现代课程理念的变革与创新。建设性后现代哲学与教育思想虽不能为高等数学课程提供具体的模式,但是它可以促使高等数学教育工作者积极反思和自我批判,获得对高等数学教学实践的深层次理解,化高等数学课程的现实困惑为课程新进步的实际开端。建设性后现代教育思想的核心观点可概括为:(一)教育要培养文化与专门知识兼备的人才,提倡课程目标预设与生成的有机结合。(二)建设性后现代教育倡导复杂性思维和一切有利于催生建设性后现代教育世界的思维方式。(三)强调教育过程必须保持有张力的节奏,经验在师生对话性交互作用中转变,意义在阐释与理解中建构,能力在回归性反思中发展,教师应成为有责任和智慧的舞伴和导师。(四)将课程理解为达成个体经验转变的过程,倡导用“自组织”作为基本假设设计非线性的开放性课程,强调评价应成为共同背景之中以转变为目的的协调过程。本研究采用文献法、观察法、比较法、调查法(访谈法和问卷调查法),通过对高等数学课程大纲、教材、教师、学生的调查,分析高等数学课程存在的问题及原因。调查发现,高等数学课程目标方面存在的主要问题是:不同院校或专业的高等数学课程目标趋同、高等数学课程目标过于宽泛、重预设轻生成、重知识轻情感、表述不清。高等数学课程内容方面存在的主要问题是:数学理论与数学应用比例失调、重数学知识而轻数学思想方法、缺乏与相关专业课程的融合、呈现形式单一。高等数学课程实施中存在的主要问题是:课堂教学以教师为中心、教学内容拘泥于课本知识、教学过程缺乏师生间的对话与交流、实践教学环节薄弱。高等数学课程评价方面存在的主要问题是评价方式、主体和内容单一,缺乏对评价结果的分析和反馈。产生上述问题的原因主要是高等数学课程的价值取向偏失、外部需求在高等数学教育领域的反映具有滞后性、教师的观念更新缓慢。针对高等数学课程存在的问题及问题产生的原因,在建设性后现代视野下探讨高等数学课程的改进策略。一是设计预设性与生成性相结合的多元化高等数学课程目标。二是构建KTAC一体化的高等数学课程内容体系(K-数学知识、T-数学思想、A-数学应用、C-数学文化)。三是开展过程教学,主要包括促进高等数学教学系统的自组织性,在节奏性对话教学中发展学生智慧,在展现数学思维过程中培育学生的创造性思维。四是实施多元动态评价,学生参与评价,全面评价学生的数学素质,注重过程评价。五是教师树立过程教育理念,通过反思转变观念,借助研究提升经验。基于建设性后现代哲学与教育思想对高等数学课程问题与改进策略进行研究,有助于高等数学课程理论的丰富和完善,又有助于高等数学课程研究的深入和细化,同时为指导和改善高等数学教学实践提供借鉴,为高等数学课程改革的具体落实提供一定参考,促进高等数学与学科教学的有效对接、高等数学教学质量的提高以及学生的发展。
钟予[10](2017)在《建筑教育中的数学教育和教学》文中进行了进一步梳理建筑,无论过去或现在,都旨在向人类提供实实在在的人文环境,建筑师执行的是最具体的人文关怀,数学则是人文精神最完美,最具体的体现,是人类共同文化遗产最核心,最根本的部分。轻视或取消数学教学,伤及了建筑教育的根本。本文探讨建筑数学的具体内容和教学方针,涉及国内外建筑数学教育的发展动向、受教育者的现实需求等。基于作者的实地考察和调研,发现建筑数学的教学应随时代精神、社会环境、学科发展以及实践需求不断调整。在此基础上,主张当代数学教学应顺应人文素质教育的改革趋势,避免系统数学知识的灌输,重在提高学生数学应用水平和造就人文精神、继承文化传统,并最终建立起与建筑创作关系更为密切的建筑数学课程,作为原有高等数学课的补充或替代。
二、在《高等数学》教学中实施素质教育的思考与尝试(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、在《高等数学》教学中实施素质教育的思考与尝试(论文提纲范文)
(1)“课程思政”视域下初中数学教学设计研究 ——以函数教学为例(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 问题提出 |
1.2 研究意义及目的 |
1.3 研究内容、研究方法和研究思路 |
1.4 研究重点、难点及创新点 |
1.5 论文结构 |
2 文献综述、核心概念界定与理论基础 |
2.1 文献综述 |
2.2 核心概念界定 |
2.3 理论基础 |
3 研究设计 |
3.1 研究假设 |
3.2 研究对象 |
3.3 研究工具 |
3.4 研究实施过程 |
3.5 研究中需要注意的问题 |
4 调查研究 |
4.1 问卷调查 |
4.2 教师访谈 |
4.3 践行课程思政存在的问题 |
5 教学设计 |
5.1 设计依据 |
5.2 框架与切入点 |
5.3 教学设计示例 |
6 教学实践 |
6.1 示例:“二次函数”第一节的第一课时 |
6.2 评析 |
6.3 效果对比分析 |
7 研究结论、建议与展望 |
7.1 研究结论 |
7.2 研究建议 |
7.3 研究不足 |
7.4 研究展望 |
参考文献 |
附录 |
附录1:初中数学教学中课程思政践行现状教师调查问卷 |
附录2:学生测试题(以二次函数为例) |
附录3:“课程思政”视域下初中数学教学设计研究教师访谈提纲 |
附录4:“课程思政”视域下初中数学教学设计研究学生访谈提纲 |
附录5:教师访谈示例 |
致谢 |
(2)课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 问题的提出 |
1.2 核心概念界定 |
1.2.1 课程思政 |
1.2.2 函数模型 |
1.3 研究目的与意义 |
1.3.1 研究目的 |
1.3.2 理论意义 |
1.3.3 实践意义 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
1.5 研究重点、难点及创新点 |
1.5.1 研究重点 |
1.5.2 研究难点 |
1.5.3 研究创新点 |
1.6 论文结构 |
第二章 文献综述、理论基础与框架 |
2.1 文献综述 |
2.1.1“课程思政”的研究现状 |
2.1.2“课程思政”在数学教学中的体现 |
2.1.3 函数模型的教学价值 |
2.1.4 函数模型的教学设计 |
2.2 理论基础 |
2.2.1 马克思关于人的全面发展理论 |
2.2.2 认知负荷理论 |
2.3 理论框架 |
2.3.1 课程思政视域下高中数学教学研究理论框架 |
2.3.2 高中数学课程思政维度划分的理论框架 |
第二章 研究设计 |
3.1 研究假设 |
3.2 研究对象 |
3.3 研究工具 |
3.3.1 教师访谈提纲 |
3.3.2 学生调查问卷 |
3.3.3 学生前测试卷 |
3.3.4 学生后测试卷 |
3.3.5 学生后测问卷 |
3.4 数据处理 |
第四章 “函数模型的应用”专题教学设计 |
4.1 教学设计目标 |
4.2 教学设计构思 |
4.3 教学设计原则 |
4.4 教学时间安排与进度 |
4.5 教学设计示例 |
第五章 “函数模型的应用”专题教学问卷与访谈分析 |
5.1 课程思政的融入对学生成绩的影响结果分析 |
5.2 课程思政视域下高中数学教学情况的总体特征 |
5.3 课程思政视域下专题教学的前后差异比较分析 |
5.3.1 前后测总体数据的配对样本t检验分析 |
5.3.2 数学品格维度的前后测数据的配对样本t检验分析 |
5.3.3 文化素养维度的前后测数据的配对样本t检验分析 |
5.3.4 价值理念维度的前后测数据的配对样本t检验分析 |
5.4 教师访谈结果分析 |
第六章 讨论、结论与建议 |
6.1 讨论 |
6.1.1 关于课程思政的融入对学生成绩影响的讨论 |
6.1.2 关于专题教学整体实践效果的讨论 |
6.1.3 关于课程思政各个子维度的实践效果比较研究 |
6.2 结论 |
6.3 建议 |
6.3.1 丰富课程思政交流形式,提升教师思政育人意识 |
6.3.2 以数学为基点联系社会热点,拓宽教师思政储备 |
6.3.3 分阶段制定思政育人目标,学科间共享思政成果 |
6.3.4 利用信息技术创新课堂形式,于互动中达到育人实效 |
6.3.5 弘扬优秀文化与先进事迹,营造良好思政环境 |
6.3.6 质性评价与定量评价相结合,细化思政考核方式 |
6.4 不足与展望 |
参考文献 |
附录 |
附录一 教师访谈提纲(教学设计前) |
附录二 教师访谈提纲(教学实践后) |
附录三 学生预测试调查问卷(第一版) |
附录四 学生预测试调查问卷(第二版) |
附录五 学生正式前测调查问卷 |
附录六 学生正式后测调查问卷 |
附录七 专家意见表 |
附录八 专家评价表 |
附录九 学生后测试题 |
致谢 |
(3)初等数学教学借鉴高等数学教学法的初探(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 研究现状 |
1.2.1 传统应试思想仍普遍存在 |
1.2.2 初等数学与高等数学的衔接问题 |
1.2.3 初等数学与高等数学的内容衔接 |
1.3 文献综述 |
1.3.1 中学教育与高等教育的衔接 |
1.3.2 中学数学与高等数学教学的衔接与策略 |
1.4 研究问题 |
1.5 研究意义 |
第2章 初等数学与高等数学教学方法的调查与分析 |
2.1 数据分析 |
2.2 调查结果再分析 |
2.3 高中数学与高等数学教学方法使用的比较 |
第3章 借鉴高等数学教学法的高中数学教学策略研究 |
3.1 类化教学 |
3.2 多角度理解本质 |
3.2.1 语言表达角度 |
3.2.2 表格角度 |
3.2.3 几何(图像)角度 |
3.2.4 代数角度 |
3.3 多知识点串联 |
3.4 趣味引申 |
3.5 合理运用阅读材料和探究与实践 |
3.6 培养分析的思维方式 |
3.7 高中与高等数学教师加强沟通 |
第4章 借鉴高等数学教学法的高中数学教学 |
4.1 斐波那契数列的起源 |
4.2 斐波那契数列与递推关系 |
4.3 斐波那契数列与极限 |
4.4 斐波那契数列与通项公式 |
4.5 斐波那契数列与前n项和 |
4.6 斐波那契数列与算法 |
第5章 借鉴高等数学教学法的高中数学教学拓展 |
5.1 递推数列与函数 |
5.2 递推数列与方程 |
5.3 换元法 |
5.4 极限思想与几何 |
第6章 总结与展望 |
6.1 总结 |
6.2 优势与不足 |
6.3 展望 |
参考文献 |
附录 A 高等数学的课时调查 |
附录 B 初等数学的课时调查 |
附录 C 访谈提纲 |
致谢 |
(4)5G网络技术对提升4G网络性能的研究(论文提纲范文)
引言 |
1 4G网络现处理办法 |
2 4G网络可应用的5G关键技术 |
2.1 Msssive MIMO技术 |
2.2 极简载波技术 |
2.3 超密集组网 |
2.4 MEC技术 |
3 总结 |
(5)初高等数学衔接问题研究 ——以三角、反三角函数为例(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 研究意义 |
1.3 文献综述 |
1.3.1 三角函数与反三角函数的研究现状 |
1.3.2 教育衔接问题的研究现状 |
1.4 小结 |
第二章 三角及反三角函数教学及应用现状分析 |
2.1 初等数学中三角及反三角函数的教学现状 |
2.1.1 数学课程标准中有关三角函数与反三角函数的变化 |
2.1.2 近五年三角函数与反三角函数高考试题分析 |
2.2 高等数学中三角及反三角函数的应用现状 |
2.2.1 极限中三角函数与反三角函数的应用 |
2.2.2 微积分中三角函数与反三角函数的应用 |
2.2.3 级数中三角函数与反三角函数的应用 |
第三章 三角及反三角函数的衔接问题及原因追溯 |
3.1 三角及反三角函数存在的衔接问题 |
3.2 三角及反三角函数衔接问题的成因 |
3.2.1 初等数学中三角及反三角函数衔接问题的成因 |
3.2.2 高等数学中三角及反三角函数衔接问题的成因 |
第四章 三角及反三角函数衔接建议 |
4.1 针对教师提出的衔接建议 |
4.1.1 重视学生数学思维的培养 |
4.1.2 注重提升学生的学科核心素养 |
4.1.3 培养终身学习观念,提升数学修养 |
4.2 针对学生提出的衔接建议 |
4.2.1 有意识的培养独立自主和善于思考的学习习惯 |
4.2.2 发挥理性思辨精神,养成良好学习方法 |
4.2.3 体会知识中蕴含的数学文化,激发数学学习兴趣 |
4.3 有关课程改革和课程设置方面的衔接建议 |
4.3.1 设置开放性渠道,促进学段间的交流 |
4.3.2 开设第二课堂,扩大知识领域 |
4.3.3 研发大学预修课程,减轻高等教育的压力 |
4.4 弱化以考定教的教育环境 |
第五章 三角及反三角函数衔接的案例设计 |
5.1 《简单的三角恒等变换》教学设计 |
5.2 《反正弦函数》教学设计 |
第六章 衔接建议在高中定积分应用一课中的应用 |
(一)问题设疑,引入新知 |
(二)由浅入深,练习巩固 |
(三)知识拓展,构建系统框架 |
结语 |
参考文献 |
攻读硕士学位期间取得的研究成果 |
致谢 |
附件 |
(6)基于成因分析的大学生数学学习困难转化研究 ——以结构教学法为例(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究对象 |
1.4 研究目的 |
1.5 研究意义 |
1.5.1 理论意义 |
1.5.2 现实意义 |
1.6 研究方法 |
第2章 文献综述与相关理论 |
2.1 学习困难的研究发展历程 |
2.2 国内外大学生数学学习困难相关研究 |
2.2.1 国外大学生数学学习困难相关研究 |
2.2.2 国内大学生数学学习困难相关研究 |
2.3 大学生数学学习困难概念界定 |
2.4 大学生数学学习困难成因分析和转化策略分析 |
2.4.1 大学生数学学习困难成因分析 |
2.4.2 大学生数学学习困难转化策略分析 |
2.5 结构教学法及理论基础 |
2.5.1 高等数学结构教学法的提出 |
2.5.2 结构教学法理论基础 |
2.5.3 结构教学法在高等数学课堂应用的实际意义 |
2.5.4 结构教学法的操作注意事项 |
第3章 大学生数学学习困难调查与分析 |
3.1 研究假设 |
3.2 可行性分析 |
3.3 被试选取 |
3.4 研究工具与施测 |
3.4.1 《高等数学学习困难调查问卷》 |
3.4.2 《高等数学教学方法访谈提纲》 |
3.5 统计方法 |
第4章 大学生数学学习困难因子分析与访谈分析 |
4.1 因子分析 |
4.2 访谈分析 |
第5章 结构化教学设计案例研究——以无穷小为例 |
5.1 结构化教学程序设计 |
5.2 结构化教学过程设计 |
5.3 结构化教学评价与访谈 |
第6章 研究结论 |
6.1 研究的主要结论 |
6.2 研究的创新之处 |
6.3 研究的局限之处 |
6.4 展望 |
参考文献 |
附录 A《高等数学学习困难调查问卷》 |
附录 B《高等数学教学方法访谈提纲》 |
致谢 |
(7)大学数学课堂文化模式建构的行动研究 ——以工科《高等数学》教学为例(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.1.1 大学数学课堂上的独白 |
1.1.2 大学数学课堂上学生的沉默 |
1.1.3 工科院校大学数学课堂文化的缺失 |
1.2 基本概念界定 |
1.2.1 大学数学课堂文化 |
1.2.2 数学探究共同体 |
1.2.3 行动研究 |
1.2.4 工科数学 |
1.2.5 社会数学规范 |
1.3 大学工科数学课堂文化建构的思路和方法 |
1.3.1 研究意义与目标 |
1.3.2 研究思路 |
1.3.3 研究方法 |
第2章 理论基础与文献综述 |
2.1 理论依据 |
2.1.1 学习的社会文化理论 |
2.1.2 活动理论观点 |
2.1.3 社会文化视角下的数学探究共同体 |
2.2 数学课堂文化研究的国内外文献综述及本研究的预期 |
2.2.1 国外研究综述 |
2.2.2 国内研究综述 |
2.2.3 本研究的侧重点与实践预期 |
第3章 行动研究方案的设计 |
3.1 行动研究法 |
3.1.1 教育行动研究 |
3.1.2 研究者和参与教师的角色 |
3.2 研究流程与步骤 |
3.2.1 课堂教育情境 |
3.2.2 研究发展过程 |
3.2.3 实施步骤 |
3.3 进入高等数学教学现场 |
3.3.1 西配楼的102数学教室 |
3.3.2 学生的高等数学学习情形及前置经验 |
3.4 资料的收集与研究信效度 |
3.4.1 资料的搜集整理 |
3.4.2 研究的信度与效度 |
第4章 第一次行动方案的实施过程及讨论 |
4.1 观察准备阶段 |
4.1.1 影响数学探究共同体实施关键问题的发现 |
4.1.2 拟定第一次行动方案以解决关键问题 |
4.2 第一次行动方案的形成 |
4.3 第一次行动方案的实施:数学对话中的探究式学习 |
4.3.1 提升共同体学习中学生的数学对话能力 |
4.3.2 解决“数学对话中探究式学习的实现”的行动策略 |
4.3.3 解决“集体论证中社会数学规范初步建立”的行动策略 |
4.4 第一次行动方案后产生的新问题 |
4.4.1 探究共同体中的数学实践亟待加强 |
4.4.2 工程教育背景下高等数学教学的方法转变 |
第5章 第二次行动方案的研究过程及讨论 |
5.1 拟定第二次行动方案的依据 |
5.2 第二次行动方案的形成 |
5.3 第二次行动方案的实施:数学探究共同体的建立与发展 |
5.3.1 数学探究共同体的建立 |
5.3.2 数学探究共同体的发展 |
5.4 第二次行动方案后对数学课堂文化的思考 |
第6章 第三次行动方案的研究过程及讨论 |
6.1 拟定第三次行动方案的依据 |
6.2 第三次行动方案的形成 |
6.3 第三次行动方案的实施:学生解决复杂工程问题的能力 |
6.3.1 基于集体论证的社会数学规范的发展与稳固 |
6.3.2 数学课堂文化构建中建模能力的考核与评价 |
6.4 质性资料的分析 |
6.4.1 确认主题 |
6.4.2 教学观察与访谈资料的分析 |
6.4.3 发现关键问题 |
6.4.4 作组织的概览 |
6.4.5 执行行动策略与检验 |
6.4.6 成果展示 |
6.5 量化资料的分析 |
6.6 对三次行动策略过程的回顾和疏理 |
第7章 结论与展望 |
7.1 研究结论 |
7.1.1 数学文化是构建大学数学课堂文化的源泉 |
7.1.2 教师对数学建模活动中集体论证的支持策略 |
7.1.3 数学探究共同体模式下的课堂文化 |
7.2 大学工科数学课堂文化模式建构的有效路径 |
7.3 局限与展望 |
7.3.1 研究局限 |
7.3.2 对后续工科数学课堂文化研究的建议 |
参考文献 |
附录 |
致谢 |
攻读学位期间的研究成果 |
(8)基于STS的创新创业教育研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 问题缘起与研究意义 |
1.1.1 问题的缘起 |
1.1.2 研究的意义 |
1.2 国内外相关问题研究述评 |
1.2.1 STS相关问题研究 |
1.2.2 创新创业教育相关研究 |
1.2.3 已有相关研究评析 |
1.3 研究思路与方法 |
1.3.1 研究的思路 |
1.3.2 研究的方法 |
1.4 研究的创新点 |
第2章 STS直面创新创业教育问题 |
2.1 STS的历史演进 |
2.1.1 STS的诞生 |
2.1.2 STS的形成 |
2.1.3 STS的发展 |
2.2 STS的基本界定 |
2.2.1 STS的概念分析 |
2.2.2 STS的研究对象 |
2.2.3 STS的研究方法 |
2.3 创新创业教育的STS审视框架 |
2.3.1 中国特色STS的现实问题 |
2.3.2 新时代中国特色的STS教育 |
2.3.3 STS审视创新创业教育的基本思路 |
第3章 创新创业教育的理论阐释 |
3.1 创新创业教育的概念厘定 |
3.1.1 创造、创新与创业 |
3.1.2 创造教育、创新教育与创业教育 |
3.1.3 创新创业教育是“三创”教育的统一 |
3.2 创新创业教育的主要特征 |
3.2.1 系统性 |
3.2.2 实践性 |
3.2.3 建构性 |
3.2.4 主体性 |
3.3 创新创业教育的基本定位 |
3.3.1 以教育与科技、经济、社会紧密结合为引领 |
3.3.2 以培养创新创业人才为根本 |
3.3.3 以“三创”素质养成为核心 |
3.3.4 以各具特色为重点 |
3.4 创新创业教育的价值分析 |
3.4.1 支撑创新型国家建设 |
3.4.2 引领经济增长的原动力 |
3.4.3 厚植“三创”文化基因 |
3.4.4 助推和谐社会建设 |
3.4.5 支撑生态文明建设 |
第4章 创新创业教育的历史考察 |
4.1 国外主要地区创新创业教育的发展状况 |
4.1.1 北美地区的创新创业教育 |
4.1.2 欧洲地区的创新创业教育 |
4.1.3 亚太地区的创新创业教育 |
4.2 我国创新创业教育的发展历程 |
4.2.1 我国创新创业教育的兴起 |
4.2.2 我国高校创新创业教育的发展 |
4.3 我国高校创新创业教育发展的基本特征 |
4.3.1 由高校自发探索到政府引导、社会联动 |
4.3.2 由技能型创新创业教育到素质型创新创业教育 |
4.3.3 由模仿型创新创业教育到本土型创新创业教育 |
第5章 创新创业教育的现实考量 |
5.1 创新创业教育理念滞后与超越 |
5.1.1 创新创业教育理念的狭隘化与碎片化 |
5.1.2 创新创业教育理念的先进性与超前性 |
5.2 创新创业教育价值取向的偏差与回归 |
5.2.1 创新创业教育价值取向偏差:功利化与表层化 |
5.2.2 创新创业教育价值取向回归:社会本位与个人本位的统一 |
5.3 创新创业教育的知识与实践关系失衡与平衡 |
5.3.1 知识与实践关系失衡的表现 |
5.3.2 知识与实践关系失衡的根源 |
5.3.3 知识与实践关系平衡的路径 |
5.4 创新创业教育与专业教育、通识教育的脱节与融合 |
5.4.1 创新创业教育与专业教育、通识教育的脱节 |
5.4.2 创新创业教育与专业教育深度融合的原则 |
5.4.3 创新创业教育与通识教育有效融合的思路 |
5.5 创新创业教育网络系统的分离与构建 |
5.5.1 创新创业教育网络系统存在的问题 |
5.5.2 创新创业教育网络系统问题的根源 |
5.5.3 创新创业教育系统网络的构建思路 |
第6章 结论 |
6.1 创新创业教育问题是中国STS必须直面的一个现实问题 |
6.2 创新创业教育是创造教育、创新教育、创业教育的有机统一 |
6.3 创新创业教育在历史发展进程中获得其内在特征 |
6.4 考量我国创新创业教育的现实问题并探寻出路 |
6.5 研究建议 |
参考文献 |
致谢 |
作者简介 |
攻读学位期间发表的论着及获奖情况 |
(9)建设性后现代视野下高等数学课程问题与改进策略研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究缘起 |
(一)高等数学课程现状引发的思考 |
(二)开放的数学教育哲学研究背景 |
(三)建设性后现代主义对高等数学课程研究的意义 |
二、研究的目的与意义 |
(一)研究目的 |
(二)研究意义 |
三、研究的内容与方法 |
(一)研究的主要内容 |
(二)研究的基本思路与方法 |
(三)研究的创新之处 |
四、有关概念界定 |
(一)课程 高等数学课程 |
(二)建设性后现代主义 |
(三)其他有关概念 |
第二章 文献综述 |
一、高等数学课程研究综述 |
(一)国外高等数学课程研究综述 |
(二)国内高等数学课程研究综述 |
二、建设性后现代思想相关研究综述 |
(一)国外相关研究综述 |
(二)国内相关研究综述 |
第三章 建设性后现代哲学与教育思想 |
一、建设性后现代哲学 |
(一)怀特海及其过程哲学 |
(二)大卫·格里芬及其后现代精神 |
二、建设性后现代教育思想的核心观点 |
(一)建设性后现代教育目的 |
(二)建设性后现代教育思维 |
(三)建设性后现代教育实践 |
(四)建设性后现代课程思想 |
第四章 高等数学课程现状调查 |
一、高等数学课程现状调查方案设计与实施 |
(一)课程大纲与教材的调查设计 |
(二)调查问卷设计与样本选取 |
(三)访谈提纲设计与样本选取 |
(四)课堂观察 |
二、高等数学课程现状调查结果 |
(一)对课程大纲的调查结果 |
(二)对教材的调查结果 |
(三)对教师的调查结果 |
(四)对学生的调查结果 |
第五章 高等数学课程存在的问题及原因分析 |
一、高等数学课程存在的问题 |
(一)课程目标趋同、宽泛、轻生成与情感、表述不清 |
(二)课程内容结构不协调 |
(三)课程实施以教师为中心、教学内容局限、教学方法单一、实践环节薄弱 |
(四)课程评价主体、内容、方式单一 |
二、高等数学课程存在问题的原因分析 |
(一)高等数学课程的价值取向偏失 |
(二)外部需求在高等数学教育领域的反映具有滞后性 |
(三)教师的观念更新缓慢 |
第六章 建设性后现代视野下高等数学课程的改进策略 |
一、设计预设性与生成性相结合的多元化课程目标 |
(一)注重预设性目标与过程性目标的结合 |
(二)设计多维度、多层次的高等数学课程目标 |
二、构建KTAC一体化高等数学课程内容体系 |
(一)体现数学知识的确定性、不确定性和过程性 |
(二)渗透数学思想 |
(三)突出数学应用 |
(四)融入数学文化 |
三、开展过程教学 |
(一)促进高等数学教学系统的自组织 |
(二)在节奏性对话教学中发展学生智慧 |
(三)在展现数学思维过程中培养学生的创造性思维 |
四、实施多元动态的发展性评价 |
(一)学生参与评价 |
(二)全面评价学生的数学素质 |
(三)注重过程评价 |
五、教师树立过程教育理念 |
(一)在反思中转变观念 |
(二)在研究中提升经验 |
结论 |
一、主要研究结论 |
二、研究局限与展望 |
参考文献 |
附录 |
攻读博士学位期间所取得的研究成果 |
致谢 |
(10)建筑教育中的数学教育和教学(论文提纲范文)
摘要 |
Absttract |
绪论 |
一、研究目的与意义 |
二、文献综述 |
三、研究方法与论文框架 |
1 我国建筑教育中的数学课程的开设 |
1.1 建筑教育的起步,1900-1920 |
1.1.1 癸卯学制,1903 |
1.1.2 壬子癸丑学制,1913 |
1.1.3 苏州工业专门学校建筑科,1923-1926 |
小结 |
1.2 欧美化教育体系的自由探索,1920-1940 |
1.2.1 逐渐完备的学院派体系 |
1.2.1.1 中央大学建筑科系(早期),1928-1937 |
1.2.1.2 东北大学建筑系,1928-1931 |
1.2.1.3 全国统一科目表,1939-1949 |
1.2.2 引入包豪斯的尝试 |
1.2.2.1 圣约翰大学建筑工程系,1942-1952 |
1.2.2.2 清华大学建筑系,1946-1949 |
1.2.3 作为一门艺术的建筑 |
1.2.3.1 北平大学艺术学院建筑系,1928-1934 |
1.2.3.2 广东勷勤大学建筑系,1931-1938 |
小结 |
1.3 社会主义教育体系的探索,1950-80 |
1.3.1 全面苏化时期,1950 |
1.3.1.1 院系调整 |
1.3.1.2 全国统—的专业教学计划 |
1.3.2 政治运动主导时期,1960-70 |
1.3.2.1 时局的影响 |
1.3.2.2 现代建筑教育的局部探索 |
1.3.3 教育恢复时期,1980 |
1.3.3.1 数学公共课的转向 |
1.3.3.2 数学专业课的变化 |
小结 |
1.4 当代职业化建筑教育的探索,1990-今 |
1.4.1 数学课程的科学化 |
1.4.2 数学课程的建筑化 |
1.4.2.1 画法几何 |
1.4.2.2 建筑数学 |
1.4.2.3 数学相关课程 |
1.4.3 数学课程的人文化 |
小结 |
2 建筑数学教学对象调研 |
2.1 建筑学毕业去向调研 |
2.1.1 设计:建筑师之路 |
2.1.1.1 独立工作能力 |
2.1.1.2 社会责任 |
2.1.2 研究:升学深造 |
2.1.2.1 教师的期待 |
2.1.2.2 学生的需求 |
2.1.3 其它:跨专业的转向 |
2.1.3.1 艺术 |
2.1.3.2 统筹管理 |
小结 |
2.2 生源的数学基础调查 |
2.2.1 知识结构调研:中学数学的课程标准与教学大纲分析 |
2.2.1.1 我国中学教学大纲的变迁,1903-今 |
2.2.1.2 现行的02版大纲 |
2.2.2 学习方法调研:高考与奥数的影响 |
2.2.2.1 高考:应试型教育的"独木桥" |
2.2.2.2 奥数:精英培养的迷途 |
小结 |
3 建筑数学课程的演变与启示 |
3.1 西方现代建筑教育两大体系中的数学课程 |
3.1.1 学院派建筑教育中的数学课程 |
3.1.1.1 建筑学教授的早期影响 |
3.1.1.2 数学教授的早期影响 |
3.1.1.3 力学学科发展和工程师的出现 |
3.1.1.4 学院派教育体系中的数学 |
3.1.2 包豪斯教育中的数学课程 |
3.1.2.1 理论蓝图 |
3.1.2.2 实践探索 |
3.1.2.3 技术精神的延续——乌尔姆设计学院 |
小结 |
3.2 当代欧美建筑教育中的数学课程 |
3.2.1 美国部分高校建筑数学课程现状调查 |
3.2.1.1 入学要求 |
3.2.1.2 教学计划 |
3.2.1.3 公众舆论中的建筑数学 |
3.2.2 欧洲部分高校建筑数学课程现状调查 |
3.2.2.1 入学要求 |
3.2.2.2 教学计划 |
3.2.2.3 公众舆论中的建筑数学 |
小结 |
4 近代数学教育改革的启示 |
4.1 近代数学教育改革的一些思索 |
4.1.1 数学的"新"或"旧" |
4.1.1.1 数学的三次危机:方法论的启示 |
4.1.1.2 非欧几何的诞生:思维模式的转变 |
4.1.2 数学的"实"与"用" |
4.1.2.1 近代数学教育理论的一些探索 |
4.1.2.2 当代我国数学教育与现实结合的探索 |
4.1.3 数学的"爱"或"恨" |
4.1.3.1 两种教学法中的数学情感 |
4.1.3.2 数学游戏的一些启示 |
小结 |
4.2 当代我国大学数学素质教育实践的启示 |
4.2.1 高等数学教育的起源 |
4.2.2 我国文科数学的探索 |
4.2.3 我国高校数学通识教育的尝试 |
4.2.3.1 理论探讨 |
4.2.3.2 实践探索 |
小结 |
5 建筑数学教学大纲初探 |
5.1 教学的目标 |
小结 |
5.2 教学的原则 |
5.2.1 现实问题驱动原则 |
5.2.2 模型化原则 |
5.2.3 适度抽象化原则 |
5.2.4 素质教育原则 |
5.2.5 美学和人文精神感召原则 |
小结 |
5.3 教学的内容 |
5.3.1 建筑学观点中的初等数学 |
5.3.1.1 数 |
5.3.1.2 函数与集合 |
5.3.1.3 几何 |
5.3.2 设计视野中的高等数学 |
5.3.2.1 画法几何与设计媒介 |
5.3.2.2 微积分的概念 |
5.3.2.3 概率统计 |
5.3.3 当代建筑实践中的"新数学" |
5.3.3.1 胞体几何与镶嵌图形 |
5.3.3.2 拓扑几何 |
5.3.3.3 分形几何 |
小结 |
5.4 教学的模式和方法 |
5.4.1 "教":"讲授式"或"发现式" |
5.4.2 "学":数学兴趣的激发 |
小结 |
5.5 教学的计划 |
5.5.1 开课时段 |
5.5.2 课时分配 |
小结 |
结论 |
参考文献 |
图片来源 |
附录 |
附录A 教学档案 |
附录A1: 北平大学艺术学院学则(1928年) |
附录A2: 北平大学艺术学院建筑系课表(1929年) |
附录A3: 国立杭州艺术专科学校建筑系的科目分配表(1934年) |
附录A4: EAAE中部分建筑院校对新生数学的要求(2013年) |
附录B 教学资料 |
附录B1 波利亚的"怎样解题"步骤列表 |
附录B2 《文科数学(丹尼斯版)》大纲 |
附录B3 "十一五"国家级规划文科数学教材简明一览 |
附录B4 当代建筑中的"新数学"主题(2010) |
附录B5 中央美术学院"建筑数学"讲座提纲(2016) |
鸣谢 |
四、在《高等数学》教学中实施素质教育的思考与尝试(论文参考文献)
- [1]“课程思政”视域下初中数学教学设计研究 ——以函数教学为例[D]. 刘家新. 天津师范大学, 2021(09)
- [2]课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例[D]. 孙贺. 天津师范大学, 2021(10)
- [3]初等数学教学借鉴高等数学教学法的初探[D]. 陆奕纯. 上海师范大学, 2021(07)
- [4]5G网络技术对提升4G网络性能的研究[J]. 刘奕. 数码世界, 2020(04)
- [5]初高等数学衔接问题研究 ——以三角、反三角函数为例[D]. 李妍. 海南师范大学, 2020(01)
- [6]基于成因分析的大学生数学学习困难转化研究 ——以结构教学法为例[D]. 魏薇. 上海师范大学, 2020(07)
- [7]大学数学课堂文化模式建构的行动研究 ——以工科《高等数学》教学为例[D]. 单妍炎. 陕西师范大学, 2019(01)
- [8]基于STS的创新创业教育研究[D]. 栾培新. 东北大学, 2018(01)
- [9]建设性后现代视野下高等数学课程问题与改进策略研究[D]. 田仕芹. 哈尔滨师范大学, 2017(05)
- [10]建筑教育中的数学教育和教学[D]. 钟予. 中央美术学院, 2017(08)